BGE-M3 is a multilingual text embedding model developed by BAAI, distinguished by its Multi-Linguality (supporting 100+ languages), Multi-Functionality (unified dense, multi-vector, and sparse retrieval), and Multi-Granularity (handling inputs from short queries to 8192-token documents). It achieves state-of-the-art retrieval performance across diverse benchmarks while maintaining a single model for multiple retrieval modes.
BGE-M3 is a multilingual text embedding model developed by BAAI, distinguished by its Multi-Linguality (supporting 100+ languages), Multi-Functionality (unified dense, multi-vector, and sparse retrieval), and Multi-Granularity (handling inputs from short queries to 8192-token documents). It achieves state-of-the-art retrieval performance across diverse benchmarks while maintaining a single model for multiple retrieval modes.
DeepInfra supports the OpenAI embeddings API. The following creates an embedding vector representing the input text
curl "https://api.deepinfra.com/v1/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $DEEPINFRA_TOKEN" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "BAAI/bge-m3-multi",
"encoding_format": "float"
}'
which will return something similar to
{
"object":"list",
"data":[
{
"object": "embedding",
"index":0,
"embedding":[
-0.010480394586920738,
-0.0026091758627444506
...
0.031979579478502274,
0.02021978422999382
]
}
],
"model": "BAAI/bge-m3-multi",
"usage": {
"prompt_tokens":12,
"total_tokens":12
}
}