We use essential cookies to make our site work. With your consent, we may also use non-essential cookies to improve user experience and analyze website traffic…

FLUX.2 is live! High-fidelity image generation made simple.

Use OpenAI API clients with LLaMas
Published on 2023.08.28 by Iskren Chernev
Use OpenAI API clients with LLaMas

Getting started

# create a virtual environment
python3 -m venv .venv
# activate environment in current shell
. .venv/bin/activate
# install openai python client
pip install openai
copy

Choose a model

Run OpenAI chat.completion

import openai

stream = True # or False

# Point OpenAI client to our endpoint
openai.api_key = "<YOUR DEEPINFRA API KEY>"
openai.api_base = "https://api.deepinfra.com/v1/openai"

# Your chosen model here
MODEL_DI = "meta-llama/Llama-2-70b-chat-hf"
chat_completion = openai.ChatCompletion.create(
    model=MODEL_DI,
    messages=[{"role": "user", "content": "Hello world"}],
    stream=stream,
    max_tokens=100,
    # top_p=0.5,
)

if stream:
    # print the chat completion
    for event in chat_completion:
        print(event.choices)
else:
    print(chat_completion.choices[0].message.content)
copy

Note that both streaming and batch mode are supported.

Existing OpenAI integration

If you're already using OpenAI chat completion in your project, you need to change the api_key, api_base and model params:

import openai

# set these before running any completions
openai.api_key = "YOUR DEEPINFRA TOKEN"
openai.api_base = "https://api.deepinfra.com/v1/openai"

openai.ChatCompletion.create(
    model="CHOSEN MODEL HERE",
    # ...
)
copy

Pricing

Our OpenAI API compatible models are priced on token output (just like OpenAI). Our current price is $1 / 1M tokens.

Docs

Check the docs for more in-depth information and examples openai api.

Related articles
Enhancing Open-Source LLMs with Function Calling FeatureEnhancing Open-Source LLMs with Function Calling FeatureWe're excited to announce that the Function Calling feature is now available on DeepInfra. We're offering Mistral-7B and Mixtral-8x7B models with this feature. Other models will be available soon. LLM models are powerful tools for various tasks. However, they're limited in their ability to per...
Function Calling for AI APIs in DeepInfra — How to Extend Your AI with Real-World Logic - Deep InfraFunction Calling for AI APIs in DeepInfra — How to Extend Your AI with Real-World Logic - Deep Infra<p>Modern large language models (LLMs) are incredibly powerful at understanding and generating text, but until recently they were largely static: they could only respond based on patterns in their training data. Function calling changes that. It lets language models interact with external logic — your own code, APIs, utilities, or business systems — while still [&hellip;]</p>