text-generation
L3.3-70B-Euryale-v2.3 is a model focused on creative roleplay from Sao10k
text-to-video
The Wan2.1 1.3B model is a lightweight, efficient text-to-video generator. Despite its compact size, it delivers impressive performance across benchmarks and generates high-quality 480P videos.
text-to-video
The Wan2.1 14B model is a high-capacity, state-of-the-art video foundation model capable of producing both 480P and 720P videos. It excels at capturing complex prompts and generating visually rich, detailed scenes, making it ideal for high-end creative tasks.
text-to-image
The Deliberate Model allows for the creation of anything desired, with the potential for better results as the user's knowledge and detail in the prompt increase. The model is ideal for meticulous anatomy artists, creative prompt writers, art designers, and those seeking explicit content.
text-to-speech
Zonos-v0.1 is a leading open-weight text-to-speech model trained on more than 200k hours of varied multilingual speech, delivering expressiveness and quality on par with—or even surpassing—top TTS providers. Our model enables highly natural speech generation from text prompts when given a speaker embedding or audio prefix, and can accurately perform speech cloning when given a reference clip spanning just a few seconds. The conditioning setup also allows for fine control over speaking rate, pitch variation, audio quality, and emotions such as happiness, fear, sadness, and anger. The model outputs speech natively at 44kHz.
text-to-speech
Zonos-v0.1 is a leading open-weight text-to-speech model trained on more than 200k hours of varied multilingual speech, delivering expressiveness and quality on par with—or even surpassing—top TTS providers. Our model enables highly natural speech generation from text prompts when given a speaker embedding or audio prefix, and can accurately perform speech cloning when given a reference clip spanning just a few seconds. The conditioning setup also allows for fine control over speaking rate, pitch variation, audio quality, and emotions such as happiness, fear, sadness, and anger. The model outputs speech natively at 44kHz.
text-generation
We introduce StarCoder2-15B-Instruct-v0.1, the very first entirely self-aligned code Large Language Model (LLM) trained with a fully permissive and transparent pipeline. Our open-source pipeline uses StarCoder2-15B to generate thousands of instruction-response pairs, which are then used to fine-tune StarCoder-15B itself without any human annotations or distilled data from huge and proprietary LLMs.
text-to-image
FLUX.1 Redux [dev] is an image variation generation adapter for all FLUX.1 base models. It enables users to refine images with slight variations and supports text-based restyling via API. Integrated with FLUX1.1 [pro] Ultra, it allows for high-quality 4-megapixel outputs. The model can be used with Diffusers in Python for efficient image generation. While powerful, it has ethical and factual limitations and is governed by a non-commercial license.
text-to-image
FLUX.1-dev is a state-of-the-art 12 billion parameter rectified flow transformer developed by Black Forest Labs. This model excels in text-to-image generation, providing highly accurate and detailed outputs. It is particularly well-regarded for its ability to follow complex prompts and generate anatomically accurate images, especially with challenging details like hands and faces.
text-to-image
FLUX.1 [schnell] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. This model offers cutting-edge output quality and competitive prompt following, matching the performance of closed source alternatives. Trained using latent adversarial diffusion distillation, FLUX.1 [schnell] can generate high-quality images in only 1 to 4 steps.
text-to-image
Black Forest Labs' latest state-of-the art proprietary model sporting top of the line prompt following, visual quality, details and output diversity.
text-to-image
Black Forest Labs' first flagship model based on Flux latent rectified flow transformers
text-generation
The Dolphin 2.6 Mixtral 8x7b model is a finetuned version of the Mixtral-8x7b model, trained on a variety of data including coding data, for 3 days on 4 A100 GPUs. It is uncensored and requires trust_remote_code. The model is very obedient and good at coding, but not DPO tuned. The dataset has been filtered for alignment and bias. The model is compliant with user requests and can be used for various purposes such as generating code or engaging in general chat.
text-generation
Dolphin 2.9.1, a fine-tuned Llama-3-70b model. The new model, trained on filtered data, is more compliant but uncensored. It demonstrates improvements in instruction, conversation, coding, and function calling abilities.
text-generation
Latest version of the Airoboros model fine-tunned version of llama-2-70b using the Airoboros dataset. This model is currently running jondurbin/airoboros-l2-70b-2.2.1
text-generation
DeepSeek R1 Distill Qwen 32B is a distilled large language model based on Qwen 2.5 32B, using outputs from DeepSeek R1. It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. Other benchmark results include: AIME 2024: 72.6 | MATH-500: 94.3 | CodeForces Rating: 1691.
text-to-image
Janus-Pro is a novel autoregressive framework that unifies multimodal understanding and generation. It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility. Janus-Pro surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus-Pro make it a strong candidate for next-generation unified multimodal models.