text-generation
Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA to improve the helpfulness of LLM generated responses to user queries. This model reaches Arena Hard of 85.0, AlpacaEval 2 LC of 57.6 and GPT-4-Turbo MT-Bench of 8.98, which are known to be predictive of LMSys Chatbot Arena Elo. As of 16th Oct 2024, this model is #1 on all three automatic alignment benchmarks (verified tab for AlpacaEval 2 LC), edging out strong frontier models such as GPT-4o and Claude 3.5 Sonnet.
text-generation
Nemotron-4-340B-Instruct is a chat model intended for use for the English language, designed for Synthetic Data Generation
zero-shot-image-classification
The CLIP model was developed by OpenAI to investigate the robustness of computer vision models. It uses a Vision Transformer architecture and was trained on a large dataset of image-caption pairs. The model shows promise in various computer vision tasks but also has limitations, including difficulties with fine-grained classification and potential biases in certain applications.
zero-shot-image-classification
A zero-shot-image-classification model released by OpenAI. The clip-vit-large-patch14-336 model was trained from scratch on an unknown dataset and achieves unspecified results on the evaluation set. The model's intended uses and limitations, as well as its training and evaluation data, are not provided. The training procedure used an unknown optimizer and precision, and the framework versions included Transformers 4.21.3, TensorFlow 2.8.2, and Tokenizers 0.12.1.
automatic-speech-recognition
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. It was trained on 680k hours of labelled data and demonstrates a strong ability to generalize to many datasets and domains without fine-tuning. The model is based on a Transformer encoder-decoder architecture. Whisper models are available for various languages including English, Spanish, French, German, Italian, Portuguese, Russian, Chinese, Japanese, Korean, and many more.
automatic-speech-recognition
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. It was trained on 680k hours of labelled data and demonstrated a strong ability to generalise to many datasets and domains without fine-tuning. Whisper checks pens are available in five configurations of varying model sizes, including a smallest configuration trained on English-only data and a largest configuration trained on multilingual data. This one is English-only.
automatic-speech-recognition
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.
automatic-speech-recognition
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains without fine-tuning. The primary intended users of these models are AI researchers studying robustness, generalisation, and capabilities of the current model.
automatic-speech-recognition
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation, trained on 680k hours of labelled data without the need for fine-tuning. It is a Transformer based encoder-decoder model, trained on either English-only or multilingual data, and is available in five configurations of varying model sizes. The models were trained on the tasks of speech recognition and speech translation, predicting transcriptions in the same or different languages as the audio.
automatic-speech-recognition
Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This version has implementation to predict word timestamps and provide a more accurate estimation of speech segments when transcribing with Whisper models.
automatic-speech-recognition
Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This variant contains implementation to predict word timestamps and provide a more accurate estimation of speech segments when transcribing with Whisper models.
automatic-speech-recognition
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation, trained on 680k hours of labeled data without fine-tuning. It's a Transformer based encoder-decoder model, trained on English-only or multilingual data, predicting transcriptions in the same or different language as the audio. Whisper checkpoints come in five configurations of varying model sizes.
text-generation
Openchat 3.6 is a LLama-3-8b fine tune that outperforms it on multiple benchmarks.
text-generation
OpenChat is a library of open-source language models that have been fine-tuned with C-RLFT, a strategy inspired by offline reinforcement learning. These models can learn from mixed-quality data without preference labels and have achieved exceptional performance comparable to ChatGPT. The developers of OpenChat are dedicated to creating a high-performance, commercially viable, open-source large language model and are continuously making progress towards this goal.
text-to-image
A drop-in replacement for Flux [Dev] that delivers sharper details, richer colors, and enhanced realism, while instantly boosting LoRAs and LyCORIS with full compatibility.
text-to-image
Blazing-fast, high-quality images rendered at five times the speed of Flux. Perfect for mood boards and mass ideation, this model excels in both realism and prompt adherence.
text-to-image
Most widely used version of Stable Diffusion. Trained on 512x512 images, it can generate realistic images given text description